Type:
Conference Paper›Invited and refereed articles in conference proceedings
Authored by:
Cardenas, Alvaro A., Baras, John S.
Conference date:
July 16-20, 2006
Conference:
21st National Conference on Artificial Intelligence, (AAAI 06) Nectar track,, pp. 1581-1584
Full Text Paper:
Abstract:
The class imbalance problem appears to be ubiquitous to a large portion of the machine learning and data mining communities. One of the key questions in this setting is how to evaluate the learning algorithms in the case of class imbalances. In this paper we introduce the Bayesian Receiver Operating Characteristic (B-ROC) curves, as a set of tradeoff curves that combine in an intuitive way, the variables that are more relevant to the evaluation of classifiers over imbalanced data sets. This presentation is based on section 4 of (C´ardenas, Baras, & Seamon 2006).